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Abstract: 

Fine particulate matter (PM2.5) and surface ozone (O3) are major air pollutants in megacities such as Delhi, 

but the design of suitable mitigation strategies is challenging. Some strategies for reducing PM2.5 may 

have the notable side-effect of increasing O3. Here, we demonstrate a numerical framework for 

investigating the impacts of mitigation strategies on both PM2.5 and O3 in Delhi. We use Gaussian process 25 

emulation to generate a computationally efficient surrogate for a regional air quality model (WRF-Chem). 

This allows us to perform global sensitivity analysis to identify the major sources of air pollution, and to 

generate emission-sector based pollutant response surfaces to inform mitigation policy development. 

Based on more than 100,000 emulation runs during the pre-monsoon period (peak O3 season), our global 

sensitivity analysis shows that local traffic emissions from Delhi city region and regional transport of 30 

pollutions emitted from the National Capital Region surrounding Delhi (NCR) are dominant factors 

influencing PM2.5 and O3 in Delhi. They together govern the O3 peak and PM2.5 concentration during 

daytime. Regional transport contributes about 80% of the PM2.5 variation during the night. Reducing 

traffic emissions in Delhi alone (e.g., by 50%) would reduce PM2.5 by 15-20% but lead to a 20-25% 

increase in O3. However, we show that reducing NCR regional emissions by 25-30% at the same time 35 

would further reduce PM2.5 by 5-10% in Delhi and avoid the O3 increase. This study provides scientific 

evidence to support the need for joint coordination of controls on local and regional scales to achieve 

effective reduction on PM2.5 whilst minimize the risk of O3 increase in Delhi.   
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1. Introduction 

Exposure to air pollutants increases morbidity and mortality (Huang et al., 2018a;WHO, 2013). The 40 

urban air quality in India, especially in Delhi, is currently among the poorest in the world (WHO, 2013, 

2016b, a). In addition to the local impacts, the Indian monsoon can transport air pollutants to remote 

oceanic regions, inject them into the stratosphere and redistribute them globally (Lelieveld et al., 2018). 

This makes the impact of Indian air pollution wide ranging regionally and globally as well as having 

interactions with climate and ecosystems world-wide. 45 

PM2.5 (particulate matter with an aerodynamic diameter of less than 2.5 µm) is a major air pollutant, 

causing increases in disease (Pope et al., 2009;Gao et al., 2015;Stafoggia et al., 2019) and reduced 

visibility (Mukherjee and Toohey, 2016;Wang and Chen, 2019;Khare et al., 2018). The population of 

India experiences high PM2.5 exposure, and this is responsible for ~1 million premature deaths per year 

(Conibear et al., 2018;Gao et al., 2018). Residential emissions are estimated to contribute ~50% of PM2.5 50 

concentrations and to cause more than 0.5 million annual mortalities across India (Conibear et al., 2018). 

The World Health Organization (WHO) reported an annual averaged PM2.5 loading of ~140 µg/m3 in 

Delhi in 2016 (WHO, 2016b), leading to ~11,000 premature deaths per year in the city (Chowdhury and 

Dey, 2016). In Delhi, the traffic sector (~50%) and the domestic sector (~20%) are the major local 

contributors to PM2.5 (Marrapu et al., 2014). Efforts to control traffic emissions in Delhi in recent years 55 

by introducing an alternating ‘odd-even’ licence plate policy have led to reductions in PM2.5 of less than 

10% (Chowdhury et al., 2017). This indicates that there is an urgent need for a coordinated plan to mitigate 

PM2.5 pollution (Chowdhury et al., 2017).  

Surface ozone (O3), another major air pollutant, is damaging to health and reduces crop yields 

(Ashworth et al., 2013;Lu et al., 2018;Kumar et al., 2018). The risks of respiratory and cardiovascular 60 

diseases are increased from short-term exposure to high ambient O3 and from long-term exposure at low 

levels (WHO, 2013;Turner et al., 2016;Fleming et al., 2018). Oxidation of volatile organic compounds 

(VOCs) in the presence of nitrogen oxides (NOx) is the main source of surface ozone. Rapid economic 

development in India has greatly increased the emissions of these O3 precursors (Duncan et al., 2016), 
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leading to significant increases in O3 especially during the pre-monsoon period (Ghude et al., 2008). 65 

Hourly maximum O3 reaches as much as 140 ppbv during the pre-monsoon season in Delhi (Ghude et al., 

2008), comparable to the most polluted regions in China (150 ppbv, Wang et al., 2017) and higher than 

the most polluted areas in the U.S. (110 ppbv, Lu et al., 2018). 

Mitigation of PM2.5 pollution may lead to an increase in surface ozone, because the dimming effect 

of aerosols and removal of hydroperoxy radicals are reduced, facilitating O3 production (Huang et al., 70 

2018b;Li et al., 2018;Hollaway et al., 2019). Furthermore, co-reduction of NOx and PM2.5 emissions may 

increase O3 in cities where O3 production is in a VOC-limited photochemical regime (Ran et al., 

2009;Xing et al., 2018;Xing et al., 2017). This has recently been reported in a number of Asian megacities, 

e.g. Shanghai (Ran et al., 2009), Beijing (Wu et al., 2015;Liu et al., 2017;Chen et al., 2018a) and 

Guangzhou (Liu et al., 2013). Delhi and coastal cities in India, which are known to be VOC-limited 75 

(Sharma et al., 2017), may face increased O3 as a side-effect of emission controls focused on PM2.5. 

Therefore, studies of mitigation strategies that target both PM2.5 and O3 are urgently needed (Chen et al., 

2018a), particularly as urban air pollution in India has been much less well studied than in many other 

countries.  

To investigate the impacts of mitigation strategies with respect to both PM2.5 and O3, we demonstrate 80 

a framework for generating emission-sector based pollutant response surfaces using Gaussian process 

emulation (O’Hagan and West, 2009;O’Hagan, 2006). We conduct global sensitivity analysis to identify 

the dominant emission sectors controlling PM2.5 and O3, and then generate sector based response surfaces 

to quantify the impacts on PM2.5 and O3 of emission reductions. In contrast to simple sensitivity analysis 

varying one input at a time, this allows full exploration of the entire input space, accounting for the 85 

interactions between different inputs (Pisoni et al., 2018;Saltelli et al., 1999). Conventionally, chemical 

transport models (CTMs, e.g. WRF-Chem) are used to calculate the impacts on pollutants concentrations 

of different mitigation scenarios. However, the computational expensive of CTMs makes them unsuitable 

for performing global sensitivity analysis or generating response surfaces, which usually require 

thousands of model runs. To overcome this difficulty, source-receptor relationships (Amann et al., 2011) 90 
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or computational efficient surrogate models, trained on a limited number of CTM simulations, are used 

to replace the expensive CTM. These approaches have been used to perform sensitivity and uncertainty 

analysis of regional air quality models (Pisoni et al., 2018), assessment of regional air quality plans (Zhao 

et al., 2017;Xing et al., 2017;Pisoni et al., 2017;Thunis et al., 2016) and sensitivity and uncertainty 

analysis of global and climate simulations (Ryan et al., 2018;Lee et al., 2016;Lee et al., 2012). Here, we 95 

use surrogate model to explore the sensitivity of PM2.5 and O3 on sector based emission controls in Delhi, 

for developing a mitigation strategy addressing both pollutants.  

In this study, we demonstrate the value of such a framework for supporting decision makers in 

determining better mitigation strategies. We give examples of its use in investigating impacts of 

mitigation scenarios on PM2.5 and O3 pollutions in Delhi, and demonstrate that regional joint coordination 100 

of emission controls over National Capital Region (NCR) of Delhi is essential for an effective reduction 

of PM2.5 whilst minimizing the risk of O3 increase. 

 

2. Materials and Methods  

2.1 WRF-Chem Model Baseline Simulation  105 

WRF-Chem (v3.9.1) – an online, fully coupled chemistry transport model (Grell et al., 2005) – has 

been widely used in previous studies of air quality across India (Marrapu et al., 2014;Mohan and Gupta, 

2018;Gupta and Mohan, 2015;Mohan and Bhati, 2011). The model has also been used to estimate the 

health burden (Conibear et al., 2018;Ghude et al., 2016) and reduction in crop yields (Ghude et al., 2014) 

from the exposure to PM2.5 and O3 over India.  110 

In this study, we focus on the hot and dry pre-monsoon period in Delhi, when average temperatures 

are around 32 oC and relative humidity (RH) is about 35% (Ojha et al., 2012). O3 approaches its annual 

peak in pre-monsoon due to strong solar radiation (Ghude et al., 2008;Ojha et al., 2012). During the pre-

monsoon period, desert dust can contribute significantly to particulate matter in Delhi (Kumar et al., 
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2014b;Kumar et al., 2014a). Here, we perform WRF-Chem simulation for the period of 2–15 May 2015 115 

(with two additional days for spin-up), which was not significantly influenced by dust storm in Delhi 

according to MODIS observations (https://earthdata.nasa.gov/earth-observation-data/near-real-

time/hazards-and-disasters/dust-storms). Strong dust storms started to influence the Indo Gangetic Plain 

on 21-24 April and 19 May 2015, respectively. This minimizes the uncertainties resulting from dust storm 

simulation and permits a stronger focus on anthropogenic emissions. Resuspended dust from road traffic 120 

is also a major contributor to PM2.5 in Delhi, and this is estimated and included in the emission inventory 

as described below. 

The model configuration follows the study of Marrapu et al. (2014), and the parameterizations used 

are listed in Table 1. Three nested domains are used, with coverage of South Asia (45 km resolution), the 

Indo Gangetic Plain (15 km resolution), and the National Capital Region (5 km resolution), see Fig. 1. A 125 

test simulation with a fourth domain over Delhi at 1.67 km resolution suggests that a further increase in 

resolution does not substantially improve model performance (details in Text S1), and this is in line with 

results from a previous study (Mohan and Bhati, 2011). The Carbon Bond Mechanism version Z (CBMZ, 

Zaveri and Peters, 1999) coupled with the MOSAIC (Zaveri et al., 2008) aerosol module with four size 

bins is used to represent gaseous chemical reaction and aerosol chemical and dynamical processes. We 130 

neglect wet scavenging and cloud chemistry processes here, as the impact of these is likely to be negligible 

during the dry pre-monsoon period over India.  

The initial and boundary conditions for chemical species are provided from MOZART-4 global 

results (https://www.acom.ucar.edu/wrf-chem/mozart.shtml). Our baseline simulation is driven by 

European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological data, as we find that 135 

this reproduces regional meteorology better than that from the National Centers for Environmental 

Prediction (NCEP) over India, consistent with a recent study (Chatani and Sharma, 2018). The wind 

pattern and temperature over Delhi in May 2015 is generally captured well in simulations driven by either 

meteorological dataset, but the model captures the variation in relative humidity much better (R=0.7) with 
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ECMWF data than with NCEP data (R=0.4, negative bias of 20-40%). More detailed discussion is 140 

provided in Text S2.     

The high-resolution Fire Inventory from NCAR (FINN, Wiedinmyer et al., 2011) is adopted to 

provide biomass burning emissions. Interactive biogenic emissions are included using the Model of 

Emissions of Gases and Aerosols from Nature (MEGAN, Guenther et al., 2006). The global Emission 

Database for Global Atmospheric Research with Task Force on Hemispheric Transport of Air Pollution 145 

(EDGAR-HTAP, Janssens-Maenhout et al., 2015) version 2.2 (year 2010) at 0.1° × 0.1° resolution is used 

to represent anthropogenic emissions apart from over Delhi, where they are represented by a high-

resolution monthly inventory for  2015 developed under the System of Air Quality Forecasting and 

Research (SAFAR) project (Sahu et al., 2011;Sahu et al., 2015). In the absence of a diurnal variation in 

emissions specific to Delhi, we adopt diurnal variations from Europe in this study (Denier van der Gon 150 

et al., 2011). The SAFAR inventory provides emission fluxes of PM10, PM2.5, black carbon, organic 

carbon, NOx, CO, SO2 and NMVOC (non-methane volatile organic compounds) from five sectors, 

including power (POW), industry (IND), domestic or residential (DOM), traffic (TRA) and wind blow 

dust from roads (WBD). Wind blow dust includes dust resuspended from vehicle movement on paved 

and unpaved roads (Sahu et al., 2011), and is therefore closely related to traffic emissions, and we combine 155 

this into the traffic sector for our study.  

The NMVOC emissions are speciated according to the EDGAR (v4.3.2) global inventory (Huang et 

al., 2017), and are then lumped for the CBMZ chemistry scheme. The speciation mapping is detailed in 

Table 2 and described below, and a toolkit has been developed to perform this mapping. Emissions of 

alcohols and ethers are split 20%:80% between methanol and ethanol by mass and then converted to 160 

molar emissions with a fractionation based on (Murrells et al., 2009). Emissions of paraffin carbon (PAR) 

are calculated by converting mass emissions from each VOC group to molar emissions and then 

multiplying by the number of paraffin carbons in order to conserve carbon. Hexanes and higher alkanes 

are converted to molar emissions of hexane and then multiplied by six to give PAR emissions. Other 

alkenes are mapped to molar emissions of butane, and this is then apportioned between terminal olefin 165 

https://doi.org/10.5194/acp-2019-618
Preprint. Discussion started: 1 August 2019
c© Author(s) 2019. CC BY 4.0 License.



8 
 

carbons (OLET), internal olefin carbons (OLEI) and PAR on a molar ratio of 1:1:4 following (Zaveri and 

Peters, 1999). Ketones are split 60%:40% by mass between acetone (KET) and methyl-ethyl ketone 

(MEK), then converted to molar emissions with fractions based on (Murrells et al., 2009). As MEK is not 

included in the CBMZ mechanism, we apportion molar emissions of MEK equally between KET and 

PAR. 170 

2.2 Observational Network 

Air quality and meteorological monitoring networks are operated in Delhi under the SAFAR project 

coordinated by IITM (Ministry of Earth Sciences, Government of India). Measurements of PM2.5, O3 and 

NOx during the May 2015 simulation period are available from six monitoring stations in Delhi: C V 

Raman (CVR), Delhi University (DEU), Indira Ghandi International Airport Terminal-3 (AIR), Ayanagar 175 

(AYA), NCMRWF (NCM) and Pusa (PUS). The instruments are calibrated and measurements are quality 

controlled in the SAFAR project (http://safar.tropmet.res.in); more details are given in previous studies 

(Sahu et al., 2011;Beig et al., 2013;Aslam et al., 2017). Site locations are shown in Fig. 2 and measured 

variables are given in Table S1.  

2.3 Global Sensitivity Analysis of Urban Air Pollution  180 

We perform global sensitivity analysis (Iooss and Lemaître, 2015) to quantify the sensitivity of 

modelled PM2.5 and O3 to each emission sector. Global sensitivity analysis has major advantages over a 

simple one-at-a-time sensitivity analysis, where a single input is varied while the other inputs are fixed at 

nominal values, as the latter approach can lead to underestimation of the true sensitivity (Saltelli et al., 

1999;Pisoni et al., 2018). The extended Fourier Amplitude Sensitivity Test (eFAST, Saltelli et al., 1999) 185 

is a commonly used approach to perform GSA, and is adopted in this study. Since eFAST typically 

requires thousands of model runs, we employ a computationally cheaper surrogate model in place of 

WRF-Chem. In this study, we use Gaussian process emulation to create the surrogate model (O’Hagan, 

2006), since a Gaussian process emulator typically requires a relatively small number of runs of the 

computationally-expensive model to generate. This is in contrast to other surrogate modelling approaches, 190 

such as neural networks, which typically require thousands of model runs to train them. Gaussian process 
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emulators have been used previously in the uncertainty assessment of atmospheric models (Lee et al., 

2016;Lee et al., 2012;Lee et al., 2011). Following these studies, a Latin hypercube space-filling approach 

is employed to provide the designs of training runs for WRF-Chem. Latin hypercube sampling is 

a statistical method for generating a near-random sample of parameter values from a multidimensional 195 

distribution (Shields and Zhang, 2016). Here, we search through 100,000 Latin hypercube random designs 

to find the optimal one where the parameter space is filled most effectively. More details of these 

approaches are described in a previous study (Ryan et al., 2018). 

In this study, we focus on a limited number of the emission sectors to demonstrate the effective of 

the approach: domestic/residential emissions in Delhi (DOM), traffic emissions in Delhi (TRA, including 200 

WBD), power and industry in Delhi (POW+IND) and total emissions in the National Capital Region 

outside Delhi (NCR). NCR represents the contribution of regional transport to pollution in Delhi. 

According to the SAFAR emission inventory, the total PM2.5 emissions of DOM, TRA, POW+IND and 

NCR are about 1.8, 6.1, 3.1 and 8.5 Gg/month in May 2015, respectively. Gaussian process emulators are 

built based on 20 training runs of WRF-Chem, with emission scaling drawn from a variation range of 0-205 

200% for each of the four specified sectors (Table S2). Emulation of the impacts of mitigation scenarios 

on PM2.5 and O3 can be performed in minutes on a laptop, in contrast to simulations with WRF-Chem 

which require a few days on a high-performance computing cluster. We perform ‘leave-one-out’ cross-

validation (O’Hagan and West, 2009;Wang et al., 2011) with 10,000 random samples to check that the 

Gaussian process emulator can fully represent the results of WRF-Chem. Modelled and emulated O3 and 210 

PM2.5 lie very close to the 1:1 line with R values of more than 0.99 as shown in Fig. 3, suggesting that the 

emulation provides a good representation of the model.   

2.4 Response Surfaces 

Response surfaces are useful for investigating the relationship between model inputs and outputs, in 

this case between sectoral emissions and modelled pollutant concentrations. They have been widely 215 

applied for air quality studies and policy making (EPA, 2006a, b;Zhao et al., 2017;Xing et al., 2017). 

Here, we analyse the responses of PM2.5 and O3 to changes in emissions from each sector of between 0% 
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and 200%. The computationally efficient Gaussian process emulation enables us to generate response 

surfaces without the computational burden of a large number of runs of the WRF-chem model.  

2.5 Outline of Analysis 220 

We use the WRF-Chem model to simulate the hourly concentrations of O3 and PM2.5 over the Delhi 

region during 2-15 May 2015 and evaluate the results against observations. We perform a simple 

sensitivity analysis to investigate the contributions of biomass burning and biogenic emissions to PM2.5 

and O3 in Delhi. We then conduct a global sensitivity analysis, using Gaussian process emulation, to 

determine the sensitivity of modelled O3 and PM2.5 concentrations to changes in the dominant 225 

anthropogenic emission sectors. Finally, we generate response surfaces to identify appropriate mitigation 

strategies for reducing PM2.5 while minimizing the risks from O3 increase.   

 

3. Results and Discussion  

3.1 Model Performance  230 

The WRF-Chem model captures the general magnitude and variation in PM2.5 well (Fig. 4a), with 

mean bias and error of about -3.5% and 11%, respectively, and an index of agreement (Willmott et al., 

2012) of 75%. The frequency distributions of modelled PM2.5 are also similar to the observations, with 

differences in mean and median concentrations of less than 10%, although high concentration spikes are 

missed by the model (Fig. S1). The modelled PM2.5 peaks around 09:00 local time (LT) because the rush 235 

hour enhances traffic emissions before the planetary boundary layer (PBL) height has increased (Fig. 4a). 

This is also seen in the modelled results at DEU (Fig. S2), which is closer to a motorway and shows a 

more intense PM2.5 peak in the morning rush hour. PM2.5 is overestimated during the morning rush hour 

(around 09:00 am) and underestimated during the early morning (03:00-05:00 LT, Fig. 4a and Fig. S2). 

This may suggest that there is an earlier rush hour or more traffic activity at night in Delhi than in 240 

European cities, since we adopted European diurnal emission patterns in this study in the absence of local 
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information. Detailed studies of traffic emissions and their variation in Delhi would help improve these 

model simulations. 

The modelled chemical composition of PM2.5 is shown in Fig. S3. Secondary inorganic aerosol (SIA), 

including sulphate, nitrate and ammonium, only contributes ~25% of aerosol mass in our simulation. In 245 

the absence of particle inorganic composition measurements during the simulation period, we compare 

our results with a previous modelling study of Delhi during the post-monsoon season (Marrapu et al., 

2014), which also shows a ~25% contribution of SIA to PM2.5 loading, in line with our results. 

Furthermore, our results are also consistent with an observational study, which reported the mass fraction 

of organic matter (usually calculated as 1.4 times OC) and elemental carbon (usually equivalent to black 250 

carbon in modelling studies, (Chen et al., 2016b) in PM2.5 of ~20% and ~6% in Delhi during May 2015, 

respectively (Sharma et al., 2018). 

The model well captures the peak O3 with a bias of less than 5%, although it underestimates O3 

during night-time (Fig. 4b). In general, the diurnal pattern and magnitude of O3 are captured by WRF-

Chem (Fig. 4b), with normalized mean bias and error of about -20% and 35%, respectively, and an index 255 

of agreement of 65%.  The underestimation during night-time is likely to be because NOx is overestimated 

by a factor of 2-3 at night (Fig. S4), and the excess NO depletes O3. This is indicated by the frequency 

distribution of O3 and NOx (Fig. S5), where the median values of observed O3 and NOx are matched well 

by the model. However, the higher peaks of modelled NOx concentration lower the modelled O3 levels, 

indicating that Delhi is in VOC-limited photochemical regime. Similar results are found at AYA (Fig. 260 

S6). The larger underestimation of O3 at NCM (Fig. S5d, industrial environment site) suggests that NOx 

emission from the industry sector may be overestimated.  

3.2 Impacts of Biogenic and Biomass Burning Emissions 

Before exploring the importance of the four selected anthropogenic emission sectors on PM2.5 and 

O3 in Delhi during simulation period, we investigate the contributions from other factors (biomass burning 265 

and biogenic emissions). We remove these sources and find that there is a negligible contribution from 
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biogenic emissions to PM2.5 concentrations over Delhi in this season (Fig. 4c and 4d). It is worth noting 

that biogenic emissions may contribute to secondary organic aerosol (SOA) in Delhi, but the formation 

of SOA is not well represented by the CBMZ-MOSAIC chemistry-aerosol mechanisms used in this study. 

However, this weakness is not expected to have a major influence on our pre-monsoon results; as 270 

described before, the difference of organic matter fraction between simulation and observation (Sharma 

et al., 2018) in May 2015 is less than 5%. About 10% of PM2.5 in Delhi is derived from biomass burning 

during the simulation period. Crop burning in Haryana and Punjab states is a major source of this (Jethva 

et al., 2018;Cusworth et al., 2018). In contrast, there is a negligible contribution from biomass burning to 

O3. However, there is a 15-20% contribution to O3 from biogenic emission of VOCs, highlighting that O3 275 

production in Delhi is strongly VOC-limited.  

3.3 Effect of the Diurnal Variation in Emissions 

In order to investigate the competing influences of meteorology and human activities on the diurnal 

patterns of PM2.5 and O3 over Delhi, we test the effect of removing the diurnal variation in anthropogenic 

emissions (‘noDiurnal’, see Fig. 4c and 4d). Modelled PM2.5 concentrations are very similar to the 280 

‘baseline’ run during daytime when the PBL is well developed, with differences of less than 5%. This 

suggests that meteorological processes such as vertical mixing, advection and transport are the dominant 

factors controlling PM2.5 in the daytime. In contrast, freshly emitted pollutants are trapped at night when 

the PBL is shallow, and concentrations are very sensitive to the emission flux, so that the diurnal pattern 

of emissions is the dominant factor at night. The PM2.5 concentration is almost doubled in the early 285 

morning (03:00-09:00 LT, Fig. 4c) when the PBL is shallow and emissions in the ‘noDiurnal’ case are 

higher. There is also a large increase in NOx in the early morning (Fig. S4), which leads to greater 

depletion of O3 (Fig. 4d). However, the concentration of O3 is about 20-25% higher during the ozone peak 

hour in the afternoon in the ‘noDiurnal’ case, as the daytime NOx emissions are less (Fig. S4). This 

sensitivity test also highlights the VOC-limited nature of O3 production in Delhi. 290 
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3.4 Sensitivity Analysis of Pollutants in Delhi  

The importance of each anthropogenic emission sector to pollutant concentrations in Delhi is 

investigated using global sensitivity analysis and indicated by global sensitivity indices (SIs), as shown 

in Fig. 5. The sensitivity index is a measure of the contribution of the variation in pollutants from one 295 

emission sector to the total variation across all four sectors considered here. A larger SI indicates a larger 

influence from the corresponding sector to the modelled average surface PM2.5 or O3 over Delhi City 

Region (marked in Fig. 2) in this study.  

The PM2.5 concentration is most sensitive to emissions from the NCR region surrounding Delhi, with 

a sensitivity index higher than 50% most of time (Fig. 5a) and reaching 80-90% and ~60% during 03:00-300 

07:00 LT and 12:00-17:00 LT, respectively. During the rush hours in the morning and evening, the 

sensitivity to NCR emissions is lower, while the sensitivity to Delhi traffic emissions increases by ~30%. 

Around 10:00 LT, local traffic emissions and emissions from NCR have a similar effect on PM2.5. In 

contrast, local traffic emissions dominate the PM2.5 in Delhi around 20:00 LT, with a sensitivity 

contribution of up to ~80%. This is caused by the collapse of the PBL in the evening rush hour at around 305 

20:00 LT which enhances the sensitivity to fresh local emissions. Local traffic emissions contribute ~60% 

of primary PM2.5 emission in Delhi (Fig. 6a), which remains concentrated in the PBL during rush hours. 

In contrast, the fully developed PBL in the daytime mixes air down from the free troposphere (Chen et 

al., 2016a), where regional transport of pollutants from NCR can be important. This could explain the 

second peak in the sensitivity to NCR emissions (50-60%) during the afternoon (Fig. 5a).  310 

The O3 in Delhi City Region is overwhelmingly dominated by local traffic emissions with a 

sensitivity index higher than 80% at night-time (Fig. 5b). Traffic contributes ~75% of total NOx emission 

in Delhi (Fig. 6b), and the shallow PBL during the night traps the NOx. This removes O3 through chemical 

reaction in the absence of solar radiation. As the PBL develops in the morning, the sensitivity of O3 to 

traffic decreases and the sensitivity to NCR emissions increases. The sensitivity to NCR emissions 315 

reaches its highest point (70%) when the PBL is fully developed around 15:00 LT. As discussed above, 

the downward mixing of air from the free troposphere and dilution of local emissions in the fully 
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developed PBL could be the reason for this. The O3 peak coincides with the highest PBL at this time 

because photolysis and development of the PBL are both driven by solar radiation. The development of 

the PBL increases the contribution from regional transport, and precursors emitted from the NCR are one 320 

of the dominant contributors to the peak of O3 in Delhi. In addition, it is noteworthy that the NOx-rich 

urban plume from Delhi has a substantial influence on O3 in downwind regions across the NCR as well, 

as discussed in Text S3.  

3.5 Mitigation Strategies 

To demonstrate a framework for developing better mitigation strategies for addressing both PM2.5 325 

and O3 pollution in Delhi, emission-sector based pollutant response surfaces are generated using Gaussian 

process emulation (Fig. 7). For local emissions in Delhi, we focus mainly on traffic and residential sectors 

here, because we find that power and industrial emissions have a more limited influence on PM2.5 and O3 

concentrations in Delhi (Fig. 5). A range of different mitigation strategies are analysed, aiming at 

mitigating PM2.5 pollution whilst minimizing the risk of O3 increase.  330 

We find that the responses of PM2.5 and O3 to each emission sector are nearly linear in Delhi. The 

response surfaces show that reducing local traffic emissions in Delhi leads to an efficient decrease in 

PM2.5 loading (Fig. 7a) but increases O3 greatly (Fig. 7b). Reducing local domestic emissions decreases 

PM2.5 loading less than reducing traffic but without increasing O3. The small impact on O3 may be because 

domestic emissions are not a major source of NOx, contributing only 15% of that from traffic (Fig. 6). A 335 

10-20% reduction in NOx is expected when reduce local domestic emissions by 50%; while, 35-45% 

reduction in NOx can be expected by a 50% reduction in local traffic emissions (Fig. S7). In addition, 

VOC is reduced more than NOx when controlling domestic emissions, as the VOC/NOx emission ratio 

(kg/kg) is 1.8 in contrast to a ratio of 0.4 for traffic emissions. Greater reduction of VOC suppresses the 

increase of O3 in Delhi, which is a VOC-limited environment. A reduction in local traffic emissions alone 340 

of 50% could decrease Delhi PM2.5 loading by 15-20%, but this would also increase O3 by 20-25%. To 

prevent the side-effect of increasing O3 by controls on traffic emissions, regional cooperation would be 

required to reduce emissions in the NCR region surrounding Delhi by 25-30%, which also permits a 
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further reduction of PM2.5 by 5-10% (Fig. 7c and 7d). This is consistent with a recent study showing that 

~60% of PM2.5 in Delhi originates from outside (Amann et al., 2017). The suggested regional joint 345 

mitigation with NCR surrounding Delhi is in line with a recent study for mitigating PM2.5 in Beijing, 

which showed that regional coordination over the North China Plain could lead to a reduction in PM2.5 of 

up to 40% in winter (Liu et al., 2016).  

 

4. Summary  350 

Previous studies have shown that emission controls focusing on mitigation of PM2.5 may result in 

substantial increases of surface ozone over urban areas that are in VOC-limited photochemical 

environment. Comprehensive studies of mitigation strategies with respect to both PM2.5 and O3 are 

urgently required, but are limited in India. In this study, we demonstrate a numerical framework for 

informing emission-sector based mitigation strategies in Delhi that account for multiple pollutants.  355 

By using Gaussian process emulation with an air quality model (WRF-Chem), we generate a 

computational efficient surrogate model for performing global sensitivity analysis and calculating 

emission-sector based pollutant response surfaces. These enable us to exhaustively investigate the impacts 

of different mitigation scenarios on PM2.5 and O3 in Delhi, which help decision makers choose better 

mitigation strategies. Global sensitivity analysis shows that pollutants originating from the National 360 

Capital Region (NCR) surrounding Delhi and local traffic emissions are the major contributors of PM2.5 

and O3 in Delhi. They co-dominate the O3 peak and PM2.5 in Delhi during daytime, while the regional 

transport governs PM2.5 during the night. Controlling local traffic emissions in Delhi would have the 

notable side effect of O3 increases, at least in the pre-monsoon/summer (peak O3 season) that we consider 

here. Our pollutant response surfaces suggest that joint coordinated emission controls with the NCR 365 

region surrounding Delhi would be required to minimize the risk of O3 increases and to achieve a more 

ambitious reduction of PM2.5. In the regional joint coordination, residential energy use could be a 

dominant emission sector over a large region in India (Conibear et al., 2018).  
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5. Discussion 370 

The experiences of developed countries (Dooley, 2002;EPA, 2011) and recently in China (Huang et 

al., 2018a) show that regional joint coordination can be achieved by changing energy infrastructure (e.g., 

replacing fossil fuel by renewable energy and natural gas), desulphurisation and denitrification 

technologies, popularization of new energy vehicles, strict control of vehicle exhaust and reducing road 

and construction dust. Further studies with more detailed information on specific emission sectors and 375 

strategies for clean-technology development and popularization would permit deeper insight into air 

pollution mitigation approaches suitable for Delhi. These are needed to address both PM2.5 which has a 

higher impact on public health (e.g., Huang et al., 2018a), and O3 which greatly impacts regional ecology 

and agriculture (e.g., Avnery et al., 2011). A more comprehensive evaluation of the health and economic 

benefits of different mitigation strategies would greatly help Indian decision makers, and the framework 380 

we have demonstrated here would provide a strong foundation for this.  
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  Table 1. Configuration of WRF-Chem 

Physics WRF option 

Micro physics Lin  scheme (Lin, 1983)  

Surface Layer MM5 similarity 

Boundary layer YSU (Hong, 2006) 

Cumulus Grell 3D 

Urban 3-category UCM 

Shortwave radiation Goddard shortwave (Chou, 1998) 

Longwave radiation Rapid Radiative Transfer Model 

Chemistry and Aerosol Chem option 

Gas-phase mechanism CBMZ (Zaveri and Peters, 1999) 

Aerosol module MOSAIC with 4 bins (~40 nm to 10 µm) 

(Zaveri et al., 2008) 

Photolysis rate Fast-J photolysis scheme (Wild et al., 2000) 

Emissions Inventories 

Anthropogenic Emissions SAFAR-2015 Delhi and EDGAR-HTAP v2.2 

Biogenic Emissions MEGAN (Guenther et al., 2006) 

Biomass Burning Emissions FINN (Wiedinmyer et al., 2011) 
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Table 2. Map of NMVOC from EDGAR emission to CBMZ scheme. 

EDGAR Name Description CBMZ  [mol]  

VOC1 Alcohols 20% CH3OH 

80% C2H5OH 

 

VOC2 Ethane C2H6  

VOC3 Propane PAR*3  

VOC4 Butane PAR*4  

VOC5 Pentane PAR*5  

VOC6 Hexanes + other Alkanes PAR*6  

VOC7 Ethene ETH  

VOC8 Propene OLET+PAR  

VOC9 Ethyne PAR*2  

VOC10 Isoprene ISOP  

VOC11 Monoterpenes ISOP*2  

VOC12 Other Alkenes OLEI*0.5+OLET*0.5+PAR*2  

VOC13 Benzene TOL-PAR  

VOC14 Toluene TOL  

VOC15 Xylenes XYL  

VOC16 Trimethylbenzenes XYL+PAR  

VOC17 Other Aromatics XYL+PAR  

VOC18 Esters RCOOH  

VOC19 Ethers 20% CH3OH 

80% C2H5OH 

 

VOC21 Formaldehyde HCHO  

VOC22 Other Aldehydes ALD2  

VOC23 Ketones 60% KET 

40% KET+PAR 

 

VOC24 Alkanoic Acids RCOOH  
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Figure 2.  SAFAR inventory of total PM2.5 emission. The locations of measurement sites over Delhi 

are marked by black dots, and the Delhi City Region is marked by a red box.  

 

Figure 1.  Map of simulation domains, modified from © Google Earth. 
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Figure 3.  Validation of Gaussian process emulator with WRF-Chem model. (a) PM2.5; (b) O3. The green dashed 

line indicates the 1:1 line.  

 

 

 

 

 

Figure 4.  Average diurnal patterns of pollutants during the 2-15 May 2015 simulation period.  (a) 

Modelled and observed PM2.5 and model PBL height (PBLH); (b) O3; (c) results of sensitivity studies for 

PM2.5; (d) results of sensitivity studies for O3. The left panels (a, c) are for site CVR, and the right panels 

(b, d) are for site AIR (marked in Fig. 2). The sensitivity runs ‘noFire’ and ‘noBIO’ show model results 

without biomass burning and biogenic emissions, respectively; and ‘noDiurnal’ show model results with 

constant anthropogenic emissions rates throughout the day.  
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Figure 5.  Averaged diurnal pattern of global sensitivity indices during the 2-15 May simulation period.  (a) 

PM2.5; (b) O3. The PM2.5 and O3 results are averaged over Delhi City Region (marked with red box in Fig. 

2). The morning and evening rush hours and the period of peak ozone are marked with the boxes to highlight 

the notable changes in contribution from each emission sector.  

 
 

 

 

 

 

Figure 6. Annual emission of different sectors in Delhi from SAFAR inventory. (a) PM2.5; (b) NOx. 
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Figure 7.  Response surfaces for PM2.5 and ozone concentrations over Delhi City Region, averaged over 2-15 May 

2018. (a) Daily average of PM2.5 concentrations as a function of local traffic and domestic emissions in Delhi; (b) 

peak hourly ozone concentrations as a function of local traffic and domestic emissions in Delhi; (c) daily average 

of PM2.5 concentrations as a function of local traffic emissions in Delhi and emissions in NCR region surrounding 

Delhi; and (d) peak hourly ozone concentrations as a function of local traffic emissions in Delhi and emissions in 

NCR region surrounding Delhi. The star indicates current conditions and the arrows show the effect of possible 

emission controls. 
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